Abstract:Large language models (LLMs) achieve strong capabilities by scaling model capacity and training data, yet many real-world deployments rely on smaller models trained or adapted from low-resource data. This gap motivates the need for mechanisms to transfer knowledge from large, high-resource models to smaller, low-resource targets. While model merging provides an effective transfer mechanism, most existing approaches assume architecture-compatible models and therefore cannot directly transfer knowledge from large high-resource LLMs to heterogeneous low-resource targets. In this work, we propose a cross-architecture merging framework based on optimal transport (OT) that aligns activations to infer cross-neuron correspondences between heterogeneous models. The resulting transport plans are then used to guide direct weight-space fusion, enabling effective high-resource to low-resource transfer using only a small set of inputs. Extensive experiments across low-resource languages and specialized domains demonstrate consistent improvements over target models.
Abstract:Large Language Models (LLMs) are increasingly deployed as agents that operate in real-world environments, introducing safety risks beyond linguistic harm. Existing agent safety evaluations rely on risk-oriented tasks tailored to specific agent settings, resulting in limited coverage of safety risk space and failing to assess agent safety behavior during long-horizon, interactive task execution in complex real-world deployments. Moreover, their specialization to particular agent settings limits adaptability across diverse agent configurations. To address these limitations, we propose Risky-Bench, a framework that enables systematic agent safety evaluation grounded in real-world deployment. Risky-Bench organizes evaluation around domain-agnostic safety principles to derive context-aware safety rubrics that delineate safety space, and systematically evaluates safety risks across this space through realistic task execution under varying threat assumptions. When applied to life-assist agent settings, Risky-Bench uncovers substantial safety risks in state-of-the-art agents under realistic execution conditions. Moreover, as a well-structured evaluation pipeline, Risky-Bench is not confined to life-assist scenarios and can be adapted to other deployment settings to construct environment-specific safety evaluations, providing an extensible methodology for agent safety assessment.
Abstract:Vision language models (VLMs) extend the reasoning capabilities of large language models (LLMs) to cross-modal settings, yet remain highly vulnerable to multimodal jailbreak attacks. Existing defenses predominantly rely on safety fine-tuning or aggressive token manipulations, incurring substantial training costs or significantly degrading utility. Recent research shows that LLMs inherently recognize unsafe content in text, and the incorporation of visual inputs in VLMs frequently dilutes risk-related signals. Motivated by this, we propose Risk Awareness Injection (RAI), a lightweight and training-free framework for safety calibration that restores LLM-like risk recognition by amplifying unsafe signals in VLMs. Specifically, RAI constructs an Unsafe Prototype Subspace from language embeddings and performs targeted modulation on selected high-risk visual tokens, explicitly activating safety-critical signals within the cross-modal feature space. This modulation restores the model's LLM-like ability to detect unsafe content from visual inputs, while preserving the semantic integrity of original tokens for cross-modal reasoning. Extensive experiments across multiple jailbreak and utility benchmarks demonstrate that RAI substantially reduces attack success rate without compromising task performance.
Abstract:Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a key approach for enhancing LLM reasoning.However, standard frameworks like Group Relative Policy Optimization (GRPO) typically employ a uniform rollout budget, leading to resource inefficiency. Moreover, existing adaptive methods often rely on instance-level metrics, such as task pass rates, failing to capture the model's dynamic learning state. To address these limitations, we propose CoBA-RL, a reinforcement learning algorithm designed to adaptively allocate rollout budgets based on the model's evolving capability. Specifically, CoBA-RL utilizes a Capability-Oriented Value function to map tasks to their potential training gains and employs a heap-based greedy strategy to efficiently self-calibrate the distribution of computational resources to samples with high training value. Extensive experiments demonstrate that our approach effectively orchestrates the trade-off between exploration and exploitation, delivering consistent generalization improvements across multiple challenging benchmarks. These findings underscore that quantifying sample training value and optimizing budget allocation are pivotal for advancing LLM post-training efficiency.
Abstract:We study learning under a two-step contrastive example oracle, as introduced by Mansouri et. al. (2025), where each queried (or sampled) labeled example is paired with an additional contrastive example of opposite label. While Mansouri et al. assume an idealized setting, where the contrastive example is at minimum distance of the originally queried/sampled point, we introduce and analyze a mechanism, parameterized by a non-decreasing noise function $f$, under which this ideal contrastive example is perturbed. The amount of perturbation is controlled by $f(d)$, where $d$ is the distance of the queried/sampled point to the decision boundary. Intuitively, this results in higher-quality contrastive examples for points closer to the decision boundary. We study this model in two settings: (i) when the maximum perturbation magnitude is fixed, and (ii) when it is stochastic. For one-dimensional thresholds and for half-spaces under the uniform distribution on a bounded domain, we characterize active and passive contrastive sample complexity in dependence on the function $f$. We show that, under certain conditions on $f$, the presence of contrastive examples speeds up learning in terms of asymptotic query complexity and asymptotic expected query complexity.
Abstract:Long-horizon agentic reasoning necessitates effectively compressing growing interaction histories into a limited context window. Most existing memory systems serialize history as text, where token-level cost is uniform and scales linearly with length, often spending scarce budget on low-value details. To this end, we introduce MemOCR, a multimodal memory agent that improves long-horizon reasoning under tight context budgets by allocating memory space with adaptive information density through visual layout. Concretely, MemOCR maintains a structured rich-text memory (e.g., headings, highlights) and renders it into an image that the agent consults for memory access, visually prioritizing crucial evidence while aggressively compressing auxiliary details. To ensure robustness across varying memory budgets, we train MemOCR with reinforcement learning under budget-aware objectives that expose the agent to diverse compression levels. Across long-context multi-hop and single-hop question-answering benchmarks, MemOCR outperforms strong text-based baselines and achieves more effective context utilization under extreme budgets.
Abstract:We introduce LongCat-Flash-Thinking-2601, a 560-billion-parameter open-source Mixture-of-Experts (MoE) reasoning model with superior agentic reasoning capability. LongCat-Flash-Thinking-2601 achieves state-of-the-art performance among open-source models on a wide range of agentic benchmarks, including agentic search, agentic tool use, and tool-integrated reasoning. Beyond benchmark performance, the model demonstrates strong generalization to complex tool interactions and robust behavior under noisy real-world environments. Its advanced capability stems from a unified training framework that combines domain-parallel expert training with subsequent fusion, together with an end-to-end co-design of data construction, environments, algorithms, and infrastructure spanning from pre-training to post-training. In particular, the model's strong generalization capability in complex tool-use are driven by our in-depth exploration of environment scaling and principled task construction. To optimize long-tailed, skewed generation and multi-turn agentic interactions, and to enable stable training across over 10,000 environments spanning more than 20 domains, we systematically extend our asynchronous reinforcement learning framework, DORA, for stable and efficient large-scale multi-environment training. Furthermore, recognizing that real-world tasks are inherently noisy, we conduct a systematic analysis and decomposition of real-world noise patterns, and design targeted training procedures to explicitly incorporate such imperfections into the training process, resulting in improved robustness for real-world applications. To further enhance performance on complex reasoning tasks, we introduce a Heavy Thinking mode that enables effective test-time scaling by jointly expanding reasoning depth and width through intensive parallel thinking.
Abstract:The Muon optimizer, a matrix-structured algorithm that leverages spectral orthogonalization of gradients, is a milestone in the pretraining of large language models. However, the underlying mechanisms of Muon -- particularly the role of gradient orthogonalization -- remain poorly understood, with very few works providing end-to-end analyses that rigorously explain its advantages in concrete applications. We take a step by studying the effectiveness of a simplified variant of Muon through two case studies: matrix factorization, and in-context learning of linear transformers. For both problems, we prove that simplified Muon converges linearly with iteration complexities independent of the relevant condition number, provably outperforming gradient descent and Adam. Our analysis reveals that the Muon dynamics decouple into a collection of independent scalar sequences in the spectral domain, each exhibiting similar convergence behavior. Our theory formalizes the preconditioning effect induced by spectral orthogonalization, offering insight into Muon's effectiveness in these matrix optimization problems and potentially beyond.
Abstract:Mixture-of-Experts (MoE) architectures have shown strong multilingual capabilities, yet the internal mechanisms underlying performance gains and cross-language differences remain insufficiently understood. In this work, we conduct a systematic analysis of MoE models, examining routing behavior and expert specialization across languages and network depth. Our analysis reveals that multilingual processing in MoE models is highly structured: routing aligns with linguistic families, expert utilization follows a clear layerwise pattern, and high-resource languages rely on shared experts while low-resource languages depend more on language-exclusive experts despite weaker performance. Layerwise interventions further show that early and late MoE layers support language-specific processing, whereas middle layers serve as language-agnostic capacity hubs. Building on these insights, we propose a routing-guided steering method that adaptively guides routing behavior in middle layers toward shared experts associated with dominant languages at inference time, leading to consistent multilingual performance improvements, particularly for linguistically related language pairs. Our code is available at https://github.com/conctsai/Multilingualism-in-Mixture-of-Experts-LLMs.
Abstract:Real-time data filtering and selection -- or trigger -- systems at high-throughput scientific facilities such as the experiments at the Large Hadron Collider (LHC) must process extremely high-rate data streams under stringent bandwidth, latency, and storage constraints. Yet these systems are typically designed as static, hand-tuned menus of selection criteria grounded in prior knowledge and simulation. In this work, we further explore the concept of a self-driving trigger, an autonomous data-filtering framework that reallocates resources and adjusts thresholds dynamically in real-time to optimize signal efficiency, rate stability, and computational cost as instrumentation and environmental conditions evolve. We introduce a benchmark ecosystem to emulate realistic collider scenarios and demonstrate real-time optimization of a menu including canonical energy sum triggers as well as modern anomaly-detection algorithms that target non-standard event topologies using machine learning. Using simulated data streams and publicly available collision data from the Compact Muon Solenoid (CMS) experiment, we demonstrate the capability to dynamically and automatically optimize trigger performance under specific cost objectives without manual retuning. Our adaptive strategy shifts trigger design from static menus with heuristic tuning to intelligent, automated, data-driven control, unlocking greater flexibility and discovery potential in future high-energy physics analyses.